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FRONTAL ISOTHERMAL SORPTION DYNA~ICS FOR ISOTHERM OF NONSIMPLE 

FO~M IN TIM PRESENCE OF CO}~LEX FO~TION IN THE MOVING PHASE 

A. I. Kalinichev UDC 541.183 

Approximate analytic solutions of the equations of nonequilibrium sorption dy- 
namics are obtained for convex--concave and concave-convex isotherms, taking 
into account the formation of nonsorbent complexes of the material in the 
mobile phase. 

The isothermal sorption dynamics of a material in a porous undeformed medium with the 
formation of a nonsorbent complex of the material with concentration cc, is described by the 
material balance equation [l] 

Oa Oc Oc c a (c + Co) = D 82 (c + q~) ( ] ) 
+ + 7 [  + u ax ax2 

and equa t ions  exp re s s ing  the r e l a t i o n  between the c o n c e n t r a t i o n s  a--c and cc--c. In the case 
of  nonequ i l i b r i um dynamics,  the c o n c e n t r a t i o n  r e l a t i o n  a -c  i s  s p e c i f i e d  by the k i n e t i c  equa- 
t i o n ,  taken here  in  the form of  the  equa t ion  of i n t r a d i f f u s i o n a l  k i n e t i c s ,  where the non- 
e q u i l i b r i u m  na tu r e  of  the  s o r p t i o n  process  i s  expressed  in terms of T [2] 

a = f (c ) - - '~  df  ac 
dc at (2) 

An equation of this form is used to solve a number of nonlinear problems of sorption dynam- 
ics [3-5]. 

If the rate of complex formation is large, then cc =~(c), where the function ~(c) may 
be determined as the complex-formation isotherm. The initial and boundary conditions of the 
equations of frontal sorption dynamics for a semiinfinite column (0 ~x < =) take the form 

c(O, t ) =  1; co(O, t )=~(1) ;  c(x,  O)=~:(x,  O ) = c ( ~ ,  t ) = q : ( ~ ,  t )=O.  
(3) 

For concave and convex isotherms f(c), ~(c), use of the integral-relation method leads 
to an approximate solution [6] describing the sorption front, and conditions of sharpening 
and hollowing out of the front as a function of the ratio of curvature parameters of the 
isotherm are introduced. In the case of equilibrium dynamics, i.e., a = f(c), using the 
characteristic equation corresponding to Eq. (l) with D = 0 

(dx  = _ , u d f f, (c) 
dt J c 1-}-dr~de ' dC 1H- ~' (c) 

f (c) = f (c (c)), (4)  

it is simple to show that when d=f/dC = < 0 (i.e., f(C) is convex) the front is stationary, 
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Fig. I. Convex--concave (a) and concave--convex (b) 
isotherms as a function of total concentration of 
material C; tan a = k,; tan B = kl,. 

and when d2f/dC 2 >.0 (i.e., f(C) is concave) the front is being eroded. 

However, in the case of polymolecular sorption [7] and ion-exchange complex-forming 
chromatography [8], nonmonotonic change in df/dC is possible: The isotherm may be convex-- 
concave f~ (Fig. Is) or concave-convex fs (Fig. Ib). (Below, quantities referring to fo and 
fs are denoted by the superscripts ~ and s, respectively.) The front as a whole, 0~.~c~1,is 
eroded in both cases, but in a different manner: it follows from Eq. (4) that for the con- 
cave--convex isotherm fs the part of the front with concentrations 0 ~ c ,  is eroded with 
time, while the part with concentrations c,~q~l is steady; for a convex--concave front fo, 
conversely, the part of the front c2 is steady and the part ca is eroded. The point c, is 
determined from the condition (Fig. I) 

for fs : ~' ----- kt,; for f~ : f' = -- 
1 ~  -- 1 - -  c ,  + ~, - -  r  1 m' o* l + m ,  

where m,------re(c,); [ , - - [ ( c , ) ;  m,--m(1); h - - f ( 1 )  

In  the  p r e s e n t  work, an approximate  s o l u t i o n  of Eqs. (1 ) - (3 )  wi th  D = 0 is  proposed fo r  
nonlinear isotherms fs,~(C). This solution is found by the integral-relation method, using 
two moving boundaries TI(X) and T*(X) for the concentrations c = 1 and c,, respectively (Fig. 
2) [9,10]. Substituting Eq. (2) into Eq. (I) and passing to the dimensionless time T and 
distance X, the following equations are obtained when D = 0 [6] 

ac am(c) , Of(c) ac am(c )  aZf(c)- T =  t , X - -  x (6) 
aT  + --O--T-- -r  ~ + ~ -  + a x  - aT  2 ' t u t  

The c o n c e n t r a t i o n  d i s t r i b u t i o n  c(X, T) w i l l  be sought  in  the  form (Fig.  2) 

Q(X, T ) = c ,  e x p { - - N ( X ) [ T _ V , ( X ) ] ~ ,  T , > T > 0 ,  (7) 

c,(X, T ) =  1 - - 3 ( 1 - - c , )  \ T - ~ T , /  + 2 ( 1 - - c , )  \ T , - - T , :  ' 

Ti > T >  T,, (8) 

To determine the as yet unknown dependences b(X),T,(X), and TI(X), the distributions in Eqs. 
(7) and (8) are required to satisfy integral relations of zero and first order (i = 0, I), 
obtained from Eq. (6) by multiplying both sides by T i and subsequently integrating with re- 
spect to T over the limits (-~, T,) or (T,, Tt) 

T.  

d f Ti(c-k re(c)) dT--  (c, + m,) T~ dT, 
d X  . dX 

+ T~, (c. + r  + : , )  - -  

T, T, 

, = - - t T ,  [ , - t - - i ( i - -1)  S T:-2[(c)dT' - - i  ! T ~ - l ( e + c p ( c ) - l - f ( c ) ) d T  . i - 1 .  
- - o o  __~ 

T1 

i" dTi z dT. d-d-- T t ( c + m ( c ) ) d T - - ( l + % ) T i  ~ + ( c , + ~ . ) T ,  -I- T~ (1 + m~-l--:d 
dX . dX 

T.  

Tt  T ,  

- -  Tf, (c, + go, + [ , ) - - i  [ r ~-I (c + m(c) + [ (c)) dr =-- i ( : ,T~ - 1 - [ , r ~ , - ' ) +  i ( i - -  I) i [(c) V ~-2 dr. 
L :; 

(9) 
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Fig. 2. Yield curve of the concentra- 
tion c for isotherms of type fo,s at a 
definite distance X: T,(X) and T~(X) 
are the moving concentration boundaries 
c = c, and c = I, respectively (all 
quantities are dimensionless). 

The dependences b(X),T,(X), and TI(X) are determined from the two zero-order relations in 
Eqs. (9) and (10) and one first-order relation: for a convex--concave isotherm (fo), Eq. (9), 
i = I; and for a concave--convex isotherm (fs), Eq. (10), i = I. The solution of Eqs. (9) and 
(10) is performed for isotherms f(e), ~(c) of polynomial form with integer indices 

f (c) = yc + ecm, + ~cm~, ~ (c) = kc + hcn' + rc n` , ( l l ) 

where e, ~, and h, r are nonlinearity parameters of the isotherms f, ~. This form of iso- 
therm allows both cases of isotherm (fo, fs) to be covered when ml = nl = 2, m2 = n2 = 3 

c=I dZ[~ o = A > O ,  d2f = A + 3B + 3F < O, 
dC z 

dzf~ = A < 0 ,  (12)  dZf~ = A + 3Bc, + 3Fc~ > O, 
dC z c=c, 0 

where 

F = h ~ - - r e ;  B = ~ ( l + k ) - - r ? ;  A = e ( l + k ) - - h ? .  

When mx = nz = 2, ma = na = 3, Eq. (5), from which the value of c, for the isotherm in 
Eq. (11) is determined, is smoothed as follows 

for [~ : Fc~ + 2Bc, + A = 0; for fs : Fc~ + 2 (F + B) c, + B + A = 0, (13)  

For example, if: 

a) r E < 0 (isotherm f(c) is convex) and h, r > 0 (isotherm ~(c) is concave) then F, B, 

A < O; 

b) E, E > 0 (isotherm f(c) is concave) and h, r < 0 (isotherm ~(c) is convex) then F, B, 

A > 0; 

c) E = r = 0 (isotherms f(c) and ~(c) are square), then F = B = 0, and no solution to 
Eq. (13) exists, i.e., isotherms of the type of fo,S(c) are impossible in these cases. For 

k = h = r = O, the solution obtained describes the sorption dynamics in the absence of com- 
plex formation for sorption isotherms of type f~,S(c) (if E and ~ are of opposite sign). 

Substituting Eqs. (8) and (11) into Eq. (lO) when i = 0 gives the following result 

after integration 

T,  = WTa + (1 + k~,) (1 --= W) X, Ta - -  T ,  - -  (I - -  W) [T~ - -  (1 + k~,) X], (14)  

where 

W - - - - l - -  1 - - c * + t P t - - q ~  ; g = ( 1 - - c , ) [ l + k + 2 h c , + 3 r c 2 , ] ;  
glQ + ptfo. + vK3 

1 
p ~ - ( 1 - - c , ) Z ( h + 3 r e , ) ;  v = ( 1 - - c , ) 3 r ;  K j =  S ( 1 - - 3 x Z +  2x~)i dx, 

0 

i - - 1 , 2 , 3 .  

Solving the two remaining integral relations by means of Eqs. (7), (II), and (14) gives 

678 



where 

V ~  _ 1 .  [T,--(1 -I- k,) X] ,  
2b R 

R = I - -  1 - - h . - - \ l  . 
" , V3 

rc~ 
c. + % 

hc~ 
h , -  - -  , r , -  

c, + {P, 

v ] - - t n l 1 + v ~ l = S X ,  v~-  

97 ~ In il + v~l = oX, 

G 
[Ti -- (1 + &,) xl, 

h - L  

v7 = ~ IT, - -  (1 + k.) X], 
[ ,  

(15) 

(16) 

( t7)  

6 2 G =  (K=-- Ka) (1--  c*)a [B+F(I+c,)]; S--  > 0 ;  
g& + pkg. + vKa (f ,  - -  h)  d 

' ] 
-1- p ~ + vKap 

( I ) a(A+Bc,) Hz f 4  ( 1 2 ) }-1 H =  1 +  l,,-~3 1/~- c, ; ~ :  - -  1 - -  / ~ , - - - - r ,  - - 1  
, , ( c , + q o , ) R  k ,  { ~ -  2 3 

t 

Ks-- l x ( 1 - - 3 x  z+2x3) s-3 dx, ] : 4 ,  5, 6. 

> 0 ;  

If approximating the real isotherms by Eq. (11) is not sufficiently accurate, the number of 
terms in Eq. (11) may be increased and the order of the polynomials m, n changed. In this 
case the form of the solutions in Eqs. (14)-(17) remains as before; all that is changed is 
the value of the constants KI-K6, p, g, and v, and, of course, the constants G, H, S, and ~. 

The basic integral parameters of the sorption front at a distance X from the origin of 
the column are the mean outlet time (or center of gravity Ti) and width (or dispersion Ai)of 
the corresponding concentration curves 8Ci/3T 

S i T i  = T OC---L dT/ OCi 
OT OT 

Pi Pi 

A~ = ( r - -  ~i) ~ OC~ 
OT 

Pi 

From Eqs. ( t8)  and (19) ,  u s i n g  the  
and the  i s o t h e r m  in  Eq. (11) ,  
acteristics 

dT, Ci = ci + q~(ci), (18) 

~z OC i dT, {PWt} = {--oo, T.}, {P2q..} = {T,T~}. dr/j 0T (19) 
Pl 

distributions in Eqs. (7) and (8), Eqs. (14) and (15), 
the following expressions are obtained for these integral char- 

7'1 = (1 + ki,)  x ,  ( 20 )  

(A,) z = [ T ~ -  (1 + ki,) X] [di, ( 21 )  

2b R = (1 -{- k.) X, (22) 

1 # 1 2 ~ Rz 
& = T V  1 - - T h *  8 r , - ~  . 

The velocity of motion of the centers of gravity T i in Eqs. (20) and 

(23) 

(22) of the fronts C i 
are determined by the "slopes" kl, and k, (Fig. I) of the sections of the isotherm correspon- 
ding to sections ci and c2 of the front, respectively. 

The solution in Eqs. (7), (8), and (14)-(17) gives the quantitative characteristics of 
the motion and erosion of the sorption front. Thus, from this solution it is easy to obtaio 
estimates of the distance Xst travelled by the front, after which steady conditions of motion 
of the front ci for fs (c2 for f~) set in. Using Eqs. (12) and (13) it is simple to prove 
that H, G < 0 and, of course, that the solution of the transcendental Eqs. (16) and (17), 

st YI,2 § as X + ~. With an accuracy of up to I% (YI,2 =-0.99), the front widths AI,2 
IYl,21 [see Eqs. (21), (23), (16), and (17)] become constant Ais t when X > Xst, where 
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X~ t 3,6 
---- ~ ' Xst ~--- 

3.6 
' (24) O 

f i -  f* a~ ~ Kil t ,  
161 

f , ( c , + ~ , )  . 4 1 - - ~  1 h ,  2 RZ (25)  A2s t=  ( I ) -- 2 - - - ~ r ,  -- 

1 + l/.--- ~ - -  ~/2  c$ IA + Bc,I 

S i n c e  t h e  c o e f f i c i e n t s  ~ and S a r e  d e t e r m i n e d  by  t he  p a r a m e t e r s  A, B, and F, t h e  q u a n t i t y  Xst  
i n  Eq. (24) i s  d e t e r m i n e d  by a c o m b i n a t i o n  o f  t h e  n o n l i n e a r i t y  p a r a m e t e r s  h,  E, and r ,  ~. As 
t h e  d i f f e r e n c e  b e t w e e n  z(1 + k ) a n d  hy ,  and t h a t  b e t w e e n  ~(1 + k) and r y ,  i n c r e a s e ,  so A, B, 
and F become l a r g e r .  

The m o t i o n  of  t h e  m o b i l e  b o u n d a r y  i s  d e s c r i b e d  by r e l a t i o n s  o b t a i n e d  from Eqs .  ( 1 4 ) -  
(17) 

T]=(l +k i , )X+-- f i ' f *  y], T~= T~--(1--W) f i - - f ,  , (26) 
o IcI 

f ,  (c, + ,~,) Rv~ 
T.~ = (1 -6 kt,) X + ]/-----~--1 :I ' 

1 +  --V2 c3,(A+Bc,) 

1 
T? = ~- IT, ~ -- (I -- ~(l + kt,) X]. (27) 

As is evident from Eqs. (26) and (27), taking into account that YI,2 § the velocity of 
the boundari_es TI, T, becomes constant when X > Xst, and equal to the velocity of the centers 
of gravity T i- 

Part of the concentration front (c2 for fs and c~ for f~) is progressively eroded. It 
follows from Eqs. (14), (15), (21), and (23) that when X > Xst the width of the eroding part 
of the front increases in proportion to the distance covered X and 

A? = gN (k,, -- k,) X + Vg~ 
W I +  V---'~ - -  

As [ W ] / _ _ ~ R ~  ( 1 h, 2 ) 
2 (k~,--k,) X + T (fl-- f,) I-- 2 3 (28) 

The coefficient for X in Eq. (28) is 

c*(1--c2*)(A+Bc*) for :~, 

ki, - -  k,  =- (c, -+- q~,) (1 - -  c, "6 qh - -  q~,) (2 -f- c,) (29) 

(1 - -  cD (A + Bc,) ~o~ /~ 
�9 (c, + q~,) (1 - -  c ,  -+- qot - -  q~,) 

i.e., this coefficient is also determined by the parameters A, B, and F. 

It is difficult to estimate the accuracy of the approximate solutions obtained in Eqs. 
(14)-(17), because of the lack of any other solutions of Eqs. (I)-(3) for the isotherms 
f~,s(c). However, as is shown by comparison with experiment [I I] and with known theoretical 
solutions of a number of linear and nonlinear problems of sorption dynamics [12], the version 
of the integral-relation method here considered is of good accuracy (with an error of 3-5%). 

NOTATION 

c, cc, dimensionless (expressed in terms of the inlet concentration) concentrations of 
the sorbed material and the complex, respectively, in the moving phase; a, dimensionless (ex- 
pressed in units of inlet concentration) concentration of material in the sorbent, referred 
to unit volume of the moving phase; C, dimensionless total concentration of material in the 
moving phase; f(c), ~(c), equation of sorption isotherm and complex-formation isotherm, re- 
spectively; x, coordinate; X, dimensionless coordinate; t, time; T, dimensionless time; u, 
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mean flow rate, m/sec; D, longitudinal diffusion coefficient, m2/sec; T, kinetic parameter 
(lag time); mi, hi, exponents; y, k, Henry coefficient for isotherms f and ~, respectively. 
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ENGINEERING ~THOD OF DETERMINING AND DESCRIBING THE 

DIRECTIONAL REFLECTION CHARACTERISTICS OF OPAQL~ 

STRUCTURAL MATERIALS 

L. N. Aksyutov, G. K. Kholopov, 
and Yu. A. Shuba 

UDC 669.018.29:535.312 

A model for the reflective properties of opaque materials and a method for ex- 
perimental determination of its parameters are proposed. 

At this t~me, the mathematical modeling of radiant heat transfer processes of engineer- 
ing systems for which it is impossible to conduct a direct experiment or is fraught with 
great difficulties plays an ever-increasing role. To assure the modeling, it is necessary 
to know not only the reflection and radiation coefficients of the materials, but also their 
directional characteristics which describe the spatial distribution of the reflected and 
intrinsic radiation. The investigations of a number of authors have shown that thermo- 
physical computations which do not take account of the directional radiation characteristics 
of the structural materials can result in substantial errors [1,2]. 

One possible means of describing the bireflectional reflective properties of a surface, 
i.e., the properties characterized by two directions, illumination and observation, is the 
use of theoretical dependences relating the probabilistic characteristics of the reflected 
radiation field to the statistical characteristics of the surface roughness [3]. The optical 
properties of the material and the parameters adequately describing the roughness of its sur- 
face should be known. However, the use of a theoretical method is not always possible for 
structural materials because of the difficulties in determining their optical properties and 
roughness [4]. 

In the practice of illumination-engineering computations for materials with an isotropic 
surface and directionally scattered [5], or directionallydiffuse nature, according to the 
new illumination-engineering terminology [6], of the reflection, the spatial reflection index 
for specific conditions of directional illumination is approximated by an ellipsoid of revo- 
lution whose major axis is oriented in the specular direction [7]. 

The purpose of this paper is to investigate the possibility of using the illumination-" 
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